Synthesis, Table of Contents Synthesis 2022; 54(05): 1375-1387DOI: 10.1055/s-0041-1737291 paper Divergent Synthesis of Chalcogenylated Quinolin-2-ones and Spiro[4,5]trienones via Intramolecular Cyclization of N-Arylpropynamides Mediated by Diselenides/Disulfides and PhICl2 Authors Xiaoxian Li Beibei Zhang Zhenyang Yu Dongke Zhang Haofeng Shi Lingzhi Xu Yunfei Du∗ Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Abstract The reaction of N-arylpropynamides with (dichloroiodo)benzene (PhICl2) and diselenides/disulfides resulted in a divergent synthesis of chalcogenylated quinolinones and spiro[4.5]trienes through intramolecular electrophilic cyclization and chalcogenylation. The chalcogenyl functional group was introduced by an electrophilic reactive organosulfenyl chloride or selenenyl chloride species, generated in situ from the reaction of disulfides/diselenides and PhICl2. Notably, the divergent cyclization pathways were determined by the substituent type on the aniline ring in N-arylpropynamide substrates. Substrates bearing a fluoro, methoxy or trifluoromethoxy group at the para-position of the aniline underwent an alternative spiralization pathway to give the 3-chalcogenylated spiro[4,5]trienones. Key words Key wordsquinolin-2-ones - diselenides/disulfides - PhICl2 - intramolecular cyclization - spiro[4,5]trienones Full Text References References 1a Park HB, Kim Y.-J, Lee JK, Lee KR, Kwon HC. Org. Lett. 2012; 14: 5002 1b D’yakonov VA, Trapeznikova OA, de Meijere A, Dzhemilev UM. Chem. Rev. 2014; 114: 5775 1c Rios R. Chem. Soc. Rev. 2012; 41: 1060 1d Gravel E, Poupon E. Nat. Prod. Rep. 2010; 27: 32 1e Li X, Huo X, Li J, She X, Pan X. Chin. J. Chem. 2009; 27: 1379 2a DeVita RJ, Hollings DD, Goulet MT, Wyvratt MJ, Fisher MH, Lo J.-L, Yang YT, Cheng K, Smith RG. Bioorg. Med. Chem. Lett. 1999; 9: 2615 2b Aleksić M, Bertoša B, Nhili R, Uzelac L, Jarak I, Depauw S, David-Cordonnier M.-H, Kralj M, Tomić S, Karminski-Zamola G. J. Med. Chem. 2012; 55: 5044 2c Tedesco R, Shaw AN, Bambal R, Chai D, Concha NO, Darcy MG, Dhanak D, Fitch DM, Gates A, Gerhardt WG, Halegoua DL, Han C, Hofmann GA, Johnston VK, Kaura AC, Liu N, Keenan RM, Lin-Goerke J, Sarisky RT, Wiggall KJ, Zimmerman MN, Duffy KJ. J. Med. Chem. 2006; 49: 971 2d Crawley GC, Briggs MT, Dowell RI, Edwards PN, Hamilton PM, Kingston JF, Oldham K, Waterson D, Whalley DP. J. Med. Chem. 1993; 36: 295 2e Ikuma Y, Hochigai H, Kimura H, Nunami N, Kobayashi T, Uchiyama K, Furuta Y, Sakai M, Horiguchi M, Masui Y, Okazaki K, Sato Y, Nakahira H. Bioorg. Med. Chem. 2012; 20: 5864 2f Jönsson S, Andersson G, Fex T, Fristedt T, Hedlund G, Jansson K, Abramo L, Fritzson I, Pekarski O, Runström A, Sandin H, Thuvesson I, Björk A. J. Med. Chem. 2004; 47: 2075 3a Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246 3b Feng MH, Tang BQ, Liang SH, Jiang XF. Curr. Top. Med. Chem. 2016; 16: 1200 3c Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW. J. Med. Chem. 2001; 44: 1202 3d De Martino G, Edler MC, La Regina G, Coluccia A, Barbera MC, Barrow D, Nicholson RI, Chiosis G, Brancale A, Hamel E, Artico M, Silvestri R. J. Med. Chem. 2006; 49: 947 3e Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255 3f Zeni G, Lüdtke DS, Panatieri RB, Braga AL. Chem. Rev. 2006; 106: 1032 3g Perin G, Lenardão EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277 3h Yu S, Wan B, Li X. Org. Lett. 2015; 17: 58 3i Lavekar AG, Equbal D, Saima, Sinha AK. Adv. Synth. Catal. 2018; 360: 180 3j Zhang X, Wang C, Jiang H, Sun L. Chem. Commun. 2018; 54: 8781 4a Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587 4b Mondal S, Manna D, Mugesh G. Angew. Chem. Int. Ed. 2015; 54: 9298 4c Pang Y, An B, Lou L, Zhang J, Yan J, Huang L, Li X, Yin S. J. Med. Chem. 2017; 60: 7300 5a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409 5b Li J, Ma C, Xing D, Hu W. Org. Lett. 2019; 21: 2101 5c Xu Z.-F, Jiang M, Liu J.-T. Chin. J. Chem. 2017; 35: 442 5d Liu Y, Chen X.-L, Sun K, Li X.-Y, Zeng F.-L, Liu X.-C, Qu L.-B, Zhao Y.-F, Yu B. Org. Lett. 2019; 21: 4019 6a Paul S, Shrestha R, Edison TN. J. I, Lee YR, Kim SH. Adv. Synth. Catal. 2016; 358: 3050 6b Zhang N, Zuo H, Xu C, Pan J, Sun J, Guo C. Chin. Chem. Lett. 2020; 31: 337 6c Gao W.-C, Liu T, Cheng Y.-F, Chang H.-H, Li X, Zhou R, Wei W.-L, Qiao Y. J. Org. Chem. 2017; 82: 13459 6d Cui H, Wei W, Yang D, Zhang J, Xu Z, Wen J, Wang H. RSC Adv. 2015; 5: 84657 6e Wu W, An Y, Li J, Yang S, Zhu Z, Jiang H. Org. Chem. Front. 2017; 4: 1751 6f Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608 6g Song R, Xie Y. Chin. J. Chem. 2017; 35: 280 6h Fang J.-D, Yan X.-B, Zhou L, Wang Y.-Z, Liu X.-Y. Adv. Synth. Catal. 2019; 361: 1985 6i Li M, Song R.-J, Li J.-H. Chin. J. Chem. 2017; 35: 299 7 Mantovani AC, Goulart TA. C, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2014; 79: 10526 8 Sahoo H, Mandal A, Dana S, Baidya M. Adv. Synth. Catal. 2018; 360: 1099 9 Qian P.-C, Liu Y, Song R.-J, Xiang J.-N, Li J.-H. Synlett 2015; 26: 1213 10 Hua J, Fang Z, Xu J, Bian M, Liu C, He W, Zhu N, Yang Z, Guo K. Green Chem. 2019; 21: 4706 11a Xing L, Zhang Y, Li B, Du Y. Org. Lett. 2019; 21: 3620 11b Shang Z, Chen Q, Xing L, Zhang Y, Wait L, Du Y. Adv. Synth. Catal. 2019; 361: 4926 11c Ai Z, Xiao J, Li Y, Guo B, Du Y, Zhao K. Org. Chem. Front. 2020; 7: 3935 12 Browne DM, Niyomura O, Wirth T. Org. Lett. 2007; 9: 3169 13a Sahoo H, Grandhi GS, Ramakrishna I, Baidya M. Org. Biomol. Chem. 2019; 17: 10163 13b Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Org. Biomol. Chem. 2020; 18: 1933 13c Liu Y, Wang Q.-L, Chen Z, Zhou Q, Xiong B.-Q, Zhang P.-L, Tang K.-W. Chem. Commun. 2019; 55: 12212 14 Most recently, we reported that the F or OMe substituted N-aryl alkynamides at the para position could trigger the spiralization pathway leading to the formation of spiro[4,5]trienones. On the basis of both computational and the experimental results, a new mechanism has been put forward that accounts for the exclusive spiralization/defluorination process. For details describing this, see: Li X, Wang Y, Ouyang Y, Yu Z, Zhang B, Zhang J, Shi H, Zuilhof H, Du Y. J. Org. Chem. 2021; 86: 9490 15a Sperança A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789 15b Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936 16a Mancuso AJ, Brownfain DS, Swern D. J. Org. Chem. 1979; 44: 4148 16b Lucchini V, Modena G, Valle G, Capozzi G. J. Org. Chem. 1981; 46: 4720 16c Fachini M, Lucchini V, Modena G, Pasi M, Pasquato L. J. Am. Chem. Soc. 1999; 121: 3944 16d Brydon SC, Lim SF, Khairallah GN, Maître P, Loire E, da Silva G, O’Hair RA. J, White JM. J. Org. Chem. 2019; 84: 10076 17a Tang JS, Guo CC. Synthesis 2015; 47: 108 17b Tang JS, Xie YX, Wang ZQ, Li JH. Synthesis 2011; 2789 17c Zhou MB, Wei WT, Xie YX, Lei Y, Li JH. J. Org. Chem. 2010; 75: 5635 17d Qian DY, Zhang JL. Chem. Commun. 2012; 48: 7082 17e Pinto A, Neuville L, Retailleau P, Zhu JP. Org. Lett. 2006; 8: 4927 17f Wang CS, Roisnel T, Dixneuf PH, Soulé JF. Adv. Synth. Catal. 2019; 361: 445 17g Cao J, Sun K, Dong SD, Lu T, Dong Y, Du D. Org. Lett. 2017; 19: 6724 17h Mou CL, Wu JC, Huang ZJ, Sun J, Jin ZC, Chi YR. Chem. Commun. 2017; 53: 13359 17i Butke GP, Jimenez MF, Michalik J, Gorski RA, Rossi NF, Wemple J. J. Org. Chem. 1978; 43: 954 17j Yin C, Yang T, Pan Y, Wen J, Zhang X. Org. Lett. 2020; 22: 920 Supplementary Material Supplementary Material Supporting Information (PDF)